Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
2.
Mol Cancer ; 23(1): 6, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184565

ABSTRACT

BACKGROUND: Adoptive cell transfer cancer immunotherapy holds promise for treating disseminated disease, yet generating sufficient numbers of lymphocytes with anti-cancer activity against diverse specificities remains a major challenge. We recently developed a novel procedure (ALECSAT) for selecting, expanding and maturating polyclonal lymphocytes from peripheral blood with the capacity to target malignant cells. METHODS: Immunodeficient mice were challenged with triple-negative breast cancer cell lines or patient-derived xenografts (PDX) and treated with allogeneic or autologous ALECSAT cells with and without anti-PDL1 therapy to assess the capacity of ALECSAT cells to inhibit primary tumor growth and metastasis. RESULTS: ALECSAT mono therapy inhibited metastasis, but did not inhibit primary tumor growth or prolong survival of tumor-bearing mice. In contrast, combined ALECSAT and anti-PDL1 therapy significantly inhibited primary tumor growth, nearly completely blocked metastasis, and prolonged survival of tumor-bearing mice. CONCLUSIONS: Combined ALECSAT and anti-PDL1 therapy results in favorable anti-cancer responses in both cell line-derived xenograft and autologous PDX models of advanced triple-negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/therapy , Antibodies, Monoclonal, Humanized , Lymphocytes , Disease Models, Animal , Immunotherapy, Adoptive
3.
J Geriatr Oncol ; 15(1): 101658, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939628

ABSTRACT

INTRODUCTION: Older patients with frailty starting oncological treatment are at higher risk of experiencing declining physical performance, loss of independence, and quality of life (QoL). This study examines whether comprehensive geriatric assessment (CGA)-guided interventions added to standard oncological care can prevent declining physical performance and QoL in older patients with frailty initiating palliative treatment. MATERIALS AND METHODS: Patients aged ≥70 years, with a Geriatric-8 score of ≤14, initiating palliative oncological treatment were enrolled in an open label randomized controlled trial and randomized 1:1 to receive either CGA-guided interventions in addition to oncological standard care or oncological care alone. Baseline characteristics, physical performance measures, and QoL questionnaires were retrieved before group allocation. CGA was performed using a fixed set of domains and validated tests by a geriatrician-led team. The primary endpoint, physical performance, was measured by the 30-s chair stand test (30s-CST) at three months. Additional outcomes included 30s-CST at six months, handgrip strength test, and QoL. Outcomes were analyzed using linear mixed regression models. The trial was registered at clinicaltrials.org (NCT04686851). RESULTS: From November 1, 2020 to May 31, 2022, 181 patients were included; 88 in the interventional arm and 93 in the control arm. Median age was 77 (interquartile range [IQR] 73-81) years, 69% were male, median Geriatric-8 score was 12 (IQR 10-13), 69% had a Performance Status of 0-1, and the median 30s-CST was 9 (IQR 5-11) repetitions. The between-group difference in 30s-CST at three months was 0.67 (95%CI: -0.94 - 2.29) and 1.57 (95%CI: -0.20 - 3.34) at six months, which were not statistically significant. Subgroup analysis including participants with a baseline Geriatric-8 of 12-14 found borderline significant between-group differences in 30s-CST scores at three and six months of 2.04 (95% confidence interval [CI]: -0.07 - 4.2, P = 0.06) and 2.25 (95%CI: 0.01-4.5, P = 0.05), respectively. No within-group or between-group differences in the summary score or the Elderly Functional Index score (measuring QoL) were found. DISCUSSION: This study did not find significant between-group differences in the 30s-CST in older patients receiving palliative care. However, a tendency towards improved physical performance was seen in the least frail. These patients may represent a target group wherein CGA interventions provide particular benefit.


Subject(s)
Frailty , Neoplasms , Aged , Humans , Male , Aged, 80 and over , Female , Quality of Life , Geriatric Assessment , Hand Strength , Neoplasms/therapy , Prognosis , Physical Functional Performance
4.
Mol Cancer ; 22(1): 110, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443114

ABSTRACT

BACKGROUND: Drugs targeting the spindle assembly checkpoint (SAC), such as inhibitors of Aurora kinase B (AURKB) and dual specific protein kinase TTK, are in different stages of clinical development. However, cell response to SAC abrogation is poorly understood and there are no markers for patient selection. METHODS: A panel of 53 tumor cell lines of different origins was used. The effects of drugs were analyzed by MTT and flow cytometry. Copy number status was determined by FISH and Q-PCR; mRNA expression by nCounter and RT-Q-PCR and protein expression by Western blotting. CRISPR-Cas9 technology was used for gene knock-out (KO) and a doxycycline-inducible pTRIPZ vector for ectopic expression. Finally, in vivo experiments were performed by implanting cultured cells or fragments of tumors into immunodeficient mice. RESULTS: Tumor cells and patient-derived xenografts (PDXs) sensitive to AURKB and TTK inhibitors consistently showed high expression levels of BH3-interacting domain death agonist (BID), while cell lines and PDXs with low BID were uniformly resistant. Gene silencing rendered BID-overexpressing cells insensitive to SAC abrogation while ectopic BID expression in BID-low cells significantly increased sensitivity. SAC abrogation induced activation of CASP-2, leading to cleavage of CASP-3 and extensive cell death only in presence of high levels of BID. Finally, a prevalence study revealed high BID mRNA in 6% of human solid tumors. CONCLUSIONS: The fate of tumor cells after SAC abrogation is driven by an AURKB/ CASP-2 signaling mechanism, regulated by BID levels. Our results pave the way to clinically explore SAC-targeting drugs in tumors with high BID expression.


Subject(s)
Neoplasms , Protein Serine-Threonine Kinases , Humans , Animals , Mice , Protein Serine-Threonine Kinases/genetics , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , M Phase Cell Cycle Checkpoints , Cell Line, Tumor , RNA, Messenger , Neoplasms/drug therapy , Neoplasms/genetics , Protein-Tyrosine Kinases/metabolism , Cell Cycle Proteins/genetics
6.
EBioMedicine ; 91: 104555, 2023 May.
Article in English | MEDLINE | ID: mdl-37054630

ABSTRACT

BACKGROUND: Reprogramming of immunosuppressive tumor-associated macrophages (TAMs) presents an attractive therapeutic strategy in cancer. The aim of this study was to explore the role of macrophage CD5L protein in TAM activity and assess its potential as a therapeutic target. METHODS: Monoclonal antibodies (mAbs) against recombinant CD5L were raised by subcutaneous immunization of BALB/c mice. Peripheral blood monocytes were isolated from healthy donors and stimulated with IFN/LPS, IL4, IL10, and conditioned medium (CM) from different cancer cell lines in the presence of anti-CD5L mAb or controls. Subsequently, phenotypic markers, including CD5L, were quantified by flow cytometry, IF and RT-qPCR. Macrophage CD5L protein expression was studied in 55 human papillary lung adenocarcinoma (PAC) samples by IHC and IF. Anti-CD5L mAb and isotype control were administered intraperitoneally into a syngeneic Lewis Lung Carcinoma mouse model and tumor growth was measured. Tumor microenvironment (TME) changes were determined by flow cytometry, IHC, IF, Luminex, RNAseq and RT-qPCR. FINDINGS: Cancer cell lines CM induced an immunosuppressive phenotype (increase in CD163, CD206, MERTK, VEGF and CD5L) in cultured macrophages. Accordingly, high TAM expression of CD5L in PAC was associated with poor patient outcome (Log-rank (Mantel-Cox) test p = 0.02). We raised a new anti-CD5L mAb that blocked the immunosuppressive phenotype of macrophages in vitro. Its administration in vivo inhibited tumor progression of lung cancer by altering the intratumoral myeloid cell population profile and CD4+ T-cell exhaustion phenotype, thereby significantly modifying the TME and increasing the inflammatory milieu. INTERPRETATION: CD5L protein plays a key function in modulating the activity of macrophages and their interactions within the TME, which supports its role as a therapeutic target in cancer immunotherapy. FUNDING: For a full list of funding bodies, please see the Acknowledgements.


Subject(s)
Lung Neoplasms , Macrophages , Animals , Humans , Mice , Cell Line, Tumor , Immunotherapy , Lung Neoplasms/therapy , Macrophages/metabolism , Monocytes , Myeloid Cells/pathology , Tumor Microenvironment
7.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901954

ABSTRACT

The frequent activation of the PI3K/AKT/mTOR pathway and its crucial role in estrogen receptor-positive (ER+) breast cancer tumorigenesis and drug resistance has made it a highly attractive therapeutic target in this breast cancer subtype. Consequently, the number of new inhibitors in clinical development targeting this pathway has drastically increased. Among these, the PIK3CA isoform-specific inhibitor alpelisib and the pan-AKT inhibitor capivasertib were recently approved in combination with the estrogen receptor degrader fulvestrant for the treatment of ER+ advanced breast cancer after progression on an aromatase inhibitor. Nevertheless, the clinical development of multiple inhibitors of the PI3K/AKT/mTOR pathway, in parallel with the incorporation of CDK4/6 inhibitors into the standard of care treatment in ER+ advanced breast cancer, has led to a multitude of available therapeutic agents and many possible combined strategies which complicate personalizing treatment. Here, we review the role of the PI3K/AKT/mTOR pathway in ER+ advanced breast cancer, highlighting the genomic contexts in which the various inhibitors of this pathway may have superior activity. We also discuss selected trials with agents targeting the PI3K/AKT/mTOR and related pathways as well as the rationale supporting the clinical development of triple combination therapy targeting ER, CDK4/6 and PI3K/AKT/mTOR in ER+ advanced breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Estrogen/metabolism , TOR Serine-Threonine Kinases/metabolism
8.
Cancer Cell ; 41(4): 649-650, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36804967

ABSTRACT

Ehmsen et al. evaluate the neutralizing capacity to current SARS-CoV-2 variants in patients with cancer before and after receiving the BNT162b2 bivalent mRNA vaccine booster. Bivalent vaccine provides some protection against BQ.1.1 but fails to protect against XBB.1 and XBB.1.5 in patients with cancer.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , BNT162 Vaccine , Neoplasms/genetics , Neoplasms/therapy , RNA, Messenger/genetics
9.
Cancers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36551639

ABSTRACT

The pivotal role of myeloid-derived suppressive cells (MDSCs) in cancer has become increasingly apparent over the past few years. However, to fully understand how MDSCs can promote human tumor progression and to develop strategies to target this cell type, relevant models that closely resemble the clinical complexity of human tumors are needed. Here, we show that mouse MDSCs of both the monocytic (M-MDCS) and the granulocytic (PMN-MDSC) lineages are recruited to human breast cancer patient-derived xenograft (PDX) tumors in mice. Transcriptomic analysis of FACS-sorted MDSC-subpopulations from the PDX tumors demonstrated the expression of several MDSC genes associated with both their mobilization and immunosuppressive function, including S100A8/9, Ptgs2, Stat3, and Cxcr2, confirming the functional identity of these cells. By combining FACS analysis, RNA sequencing, and immune florescence, we show that the extent and type of MDSC infiltration depend on PDX model intrinsic factors such as the expression of chemokines involved in mobilizing and recruiting tumor-promoting MDSCs. Interestingly, MDSCs have been shown to play a prominent role in breast cancer metastasis, and in this context, we demonstrate increased recruitment of MDSCs in spontaneous PDX lung metastases compared to the corresponding primary PDX tumors. We also demonstrate that T cell-induced inflammation enhances the recruitment of MDSC in experimental breast cancer metastases. In conclusion, breast cancer PDX models represent a versatile tool for studying molecular mechanisms that drive myeloid cell recruitment to primary and metastatic tumors and facilitate the development of innovative therapeutic strategies targeting these cells.

10.
Hypertension ; 79(11): 2530-2541, 2022 11.
Article in English | MEDLINE | ID: mdl-36082664

ABSTRACT

BACKGROUND: Angiotensin AT2-receptor signaling is atypical for a G-protein coupled receptor and incompletely understood. To obtain novel insights into AT2-receptor signaling, we mapped changes in the phosphorylation status of the entire proteome of human aortic endothelial cells in response to AT2-receptor stimulation. METHODS: Phosphorylation status of human aortic endothelial cells after stimulation with C21 (1 µM; 0, 1, 3, 5, 20 minutes) was determined utilizing time-resolved quantitative phosphoproteomics. Specific changes in protein phosphorylation and acetylation were confirmed by Western Blotting. Functional tests included resazurin assay for cell proliferation, and caspase 3/7 luminescence assay or FACS analysis of annexin V expression for apoptosis. RESULTS: AT2-receptor stimulation significantly altered the phosphorylation status of 172 proteins (46% phosphorylations, 54% dephosphorylations). Bioinformatic analysis revealed a cluster of phospho-modified proteins involved in antiproliferation and apoptosis. Among these proteins, HDAC1 (histone-deacetylase-1) was dephosphorylated at serine421/423 involving serine/threonine phosphatases. Resulting HDAC1 inhibition led to p53 acetylation and activation. AT2-receptor stimulation induced antiproliferation and apoptosis, which were absent when cells were co-incubated with the p53 inhibitor pifithrin-α, thus indicating p53-dependence of these AT2-receptor mediated functions. CONCLUSIONS: Contrary to the prevailing view that AT2-receptor signaling largely involves phosphatases, our study revealed significant involvement of kinases. HDAC1 inhibition and resulting p53 activation were identified as novel, AT2-receptor coupled signaling mechanisms. Furthermore, the study created an openly available dataset of AT2-receptor induced phospho-modified proteins, which has the potential to be the basis for further discoveries of currently unknown, AT2-receptor coupled signaling mechanisms.


Subject(s)
Histones , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Receptor, Angiotensin, Type 2/metabolism , Endothelial Cells/metabolism , Apoptosis , Phosphoric Monoester Hydrolases/metabolism , Serine , Angiotensins/metabolism , Histone Deacetylase 1/metabolism
11.
NPJ Precis Oncol ; 6(1): 68, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153348

ABSTRACT

Resistance to aromatase inhibitor (AI) treatment and combined CDK4/6 inhibitor (CDK4/6i) and endocrine therapy (ET) are crucial clinical challenges in treating estrogen receptor-positive (ER+) breast cancer. Understanding the resistance mechanisms and identifying reliable predictive biomarkers and novel treatment combinations to overcome resistance are urgently needed. Herein, we show that upregulation of CDK6, p-CDK2, and/or cyclin E1 is associated with adaptation and resistance to AI-monotherapy and combined CDK4/6i and ET in ER+ advanced breast cancer. Importantly, co-targeting CDK2 and CDK4/6 with ET synergistically impairs cellular growth, induces cell cycle arrest and apoptosis, and delays progression in AI-resistant and combined CDK4/6i and fulvestrant-resistant cell models and in an AI-resistant autocrine breast tumor in a postmenopausal xenograft model. Analysis of CDK6, p-CDK2, and/or cyclin E1 expression as a combined biomarker in metastatic lesions of ER+ advanced breast cancer patients treated with AI-monotherapy or combined CDK4/6i and ET revealed a correlation between high biomarker expression and shorter progression-free survival (PFS), and the biomarker combination was an independent prognostic factor in both patients cohorts. Our study supports the clinical development of therapeutic strategies co-targeting ER, CDK4/6 and CDK2 following progression on AI-monotherapy or combined CDK4/6i and ET to improve survival of patients exhibiting high tumor levels of CDK6, p-CDK2, and/or cyclin E1.

12.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36096528

ABSTRACT

BACKGROUND: Immunosuppressive extracellular adenosine is generated by the enzymatic activity of CD73. In preclinical models, antibodies (Abs) targeting different epitopes on CD73 exert anticancer activity through distinct mechanisms such as inhibition of enzymatic activity, engagement of Fc receptors, and spatial redistribution of CD73. METHODS: Using controlled Fab arm exchange, we generated biparatopic bispecific antibodies (bsAbs) from parental anti-CD73 Abs with distinct anticancer activities. The resulting anticancer activity was evaluated using in vitro and in vivo models. RESULTS: We demonstrate that different anticancer activities can be combined in a biparatopic bsAb. Remarkably, the bsAb significantly improved the enzyme inhibitory activity compared with the parental Abs, which led to neutralization of adenosine-mediated T-cell suppression as demonstrated by proliferation and interferon gamma (IFN-γ) production and prolonged survival of tumor-bearing mice. Additionally, the bsAb caused more efficient internalization of cell surface CD73 and stimulated potent Fc-mediated engagement of human immune effector cells in vitro and in vivo. CONCLUSIONS: Our data collectively demonstrate that complementary anticancer mechanisms of action of distinct anti-CD73 Abs can be combined and enhanced in a biparatopic bsAb. The multiple mechanisms of action and superior activity compared with the monospecific parental Abs make the bsAb a promising candidate for therapeutic targeting of CD73 in cancer. This concept may greatly improve future Ab design.


Subject(s)
Antibodies, Bispecific , Neoplasms , Adenosine , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Epitopes , Humans , Mice
13.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077449

ABSTRACT

Triple-negative breast cancer (TNBC) is a heterogeneous disease that accounts for 10-15% of all breast cancer cases. Within TNBC, the treatment of basal B is the most challenging due to its highly invasive potential, and thus treatments to suppress metastasis formation in this subgroup are urgently needed. However, the mechanisms underlying the metastatic ability of TNBC remain unclear. In the present study, we investigated the role of Aurora A and Bcl-xL in regulating basal B cell invasion. We found gene amplification and elevated protein expression in the basal B cells, which also showed increased invasiveness in vitro, compared to basal A cells. Chemical inhibition of Aurora A with alisertib and siRNA-mediated knockdown of BCL2L1 decreased the number of invading cells compared to non-treated cells in basal B cell lines. The analysis of the correlation between AURKA and BCL2L1 expression in TNBC and patient survival revealed significantly decreased relapse-free survival (n = 534, p = 0.012) and distant metastasis-free survival (n = 424, p = 0.017) in patients with primary tumors exhibiting a high combined expression of AURKA and BCL2L1. Together, our findings suggest that high levels of Aurora A and Bcl-xL promote metastasis, and inhibition of these proteins may suppress metastasis and improve patient survival in basal B TNBC.


Subject(s)
Aurora Kinase A/metabolism , Neoplasm Metastasis , Triple Negative Breast Neoplasms , bcl-X Protein/metabolism , Aurora Kinase A/genetics , Cell Line, Tumor , Humans , Neoplasm Recurrence, Local , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , bcl-X Protein/genetics
15.
Nat Commun ; 13(1): 4118, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840558

ABSTRACT

The hypoxic tumor microenvironment has been implicated in immune escape, but the underlying mechanism remains elusive. Using an in vitro culture system modeling human T cell dysfunction and exhaustion in triple-negative breast cancer (TNBC), we find that hypoxia suppresses immune effector gene expression, including in T and NK cells, resulting in immune effector cell dysfunction and resistance to immunotherapy. We demonstrate that hypoxia-induced factor 1α (HIF1α) interaction with HDAC1 and concurrent PRC2 dependency causes chromatin remolding resulting in epigenetic suppression of effector genes and subsequent immune dysfunction. Targeting HIF1α and the associated epigenetic machinery can reverse the immune effector dysfunction and overcome resistance to PD-1 blockade, as demonstrated both in vitro and in vivo using syngeneic and humanized mice models. These findings identify a HIF1α-mediated epigenetic mechanism in immune dysfunction and provide a potential strategy to overcome immune resistance in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Epigenesis, Genetic , Humans , Hypoxia/genetics , Immunotherapy/methods , Mice , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Tumor Microenvironment/genetics
16.
Proc Natl Acad Sci U S A ; 119(31): e2201376119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878022

ABSTRACT

Relapse to anti-HER2 monoclonal antibody (mAb) therapies, such as trastuzumab in HER2+ breast cancer (BC), is associated with residual disease progression due to resistance to therapy. Here, we identify interferon-γ inducible protein 16 (IFI16)-dependent STING signaling as a significant determinant of trastuzumab responses in HER2+ BC. We show that down-regulation of immune-regulated genes (IRG) is specifically associated with poor survival of HER2+, but not other BC subtypes. Among IRG, IFI16 is identified as a direct target of EZH2, the underexpression of which leads to deficient STING activation and downstream CXCL10/11 expression in response to trastuzumab treatment. Dual inhibition of EZH2 and histone deacetylase (HDAC) significantly activates IFI16-dependent immune responses to trastuzumab. Notably, a combination of a novel histone methylation inhibitor with an HDAC inhibitor induces complete tumor eradication and long-term T cell memory in a HER2+ BC mouse model. Our findings demonstrate an epigenetic regulatory mechanism suppressing the expression of the IFI16-CXCL10/11 signaling pathway that provides a survival advantage to HER2+ BC to confer resistance to trastuzumab treatment.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Membrane Proteins , Nuclear Proteins , Phosphoproteins , Trastuzumab , Animals , Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Cell Line, Tumor , Chemokine CXCL10 , Chemokine CXCL11 , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Immunity , Membrane Proteins/metabolism , Mice , Neoplasm Recurrence, Local/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Receptor, ErbB-2/genetics , Signal Transduction , Trastuzumab/pharmacology
17.
Front Oncol ; 12: 818437, 2022.
Article in English | MEDLINE | ID: mdl-35530312

ABSTRACT

The lack of inadequate preclinical models remains a limitation for cancer drug development and is a primary contributor to anti-cancer drug failures in clinical trials. Heterotypic multicellular spheroids are three-dimensional (3D) spherical structures generated by self-assembly from aggregates of two or more cell types. Compared to traditional monolayer cell culture models, the organization of cells into a 3D tissue-like structure favors relevant physiological conditions with chemical and physical gradients as well as cell-cell and cell-extracellular matrix (ECM) interactions that recapitulate many of the hallmarks of cancer in situ. Epidermal growth factor receptor (EGFR) mutations are prevalent in non-small cell lung cancer (NSCLC), yet various mechanisms of acquired resistance, including epithelial-to-mesenchymal transition (EMT), limit the clinical benefit of EGFR tyrosine kinase inhibitors (EGFRi). Improved preclinical models that incorporate the complexity induced by epithelial-to-mesenchymal plasticity (EMP) are urgently needed to advance new therapeutics for clinical NSCLC management. This study was designed to provide a thorough characterization of multicellular spheroids of isogenic cancer cells of various phenotypes and demonstrate proof-of-principle for the applicability of the presented spheroid model to evaluate the impact of cancer cell phenotype in drug screening experiments through high-dimensional and spatially resolved imaging mass cytometry (IMC) analyses. First, we developed and characterized 3D homotypic and heterotypic spheroid models comprising EGFRi-sensitive or EGFRi-resistant NSCLC cells. We observed that the degree of EMT correlated with the spheroid generation efficiency in monocultures. In-depth characterization of the multicellular heterotypic spheroids using immunohistochemistry and high-dimensional single-cell analyses by IMC revealed intrinsic differences between epithelial and mesenchymal-like cancer cells with respect to self-sorting, spatiotemporal organization, and stromal cell interactions when co-cultured with fibroblasts. While the carcinoma cells harboring an epithelial phenotype self-organized into a barrier sheet surrounding the fibroblasts, mesenchymal-like carcinoma cells localized to the central hypoxic and collagen-rich areas of the compact heterotypic spheroids. Further, deep-learning-based single-cell segmentation of IMC images and application of dimensionality reduction algorithms allowed a detailed visualization and multiparametric analysis of marker expression across the different cell subsets. We observed a high level of heterogeneity in the expression of EMT markers in both the carcinoma cell populations and the fibroblasts. Our study supports further application of these models in pre-clinical drug testing combined with complementary high-dimensional single-cell analyses, which in turn can advance our understanding of the impact of cancer-stroma interactions and epithelial phenotypic plasticity on innate and acquired therapy resistance in NSCLC.

19.
BMJ Open ; 12(6): e058179, 2022 06 03.
Article in English | MEDLINE | ID: mdl-36691235

ABSTRACT

Waste in research has been well documented, but initiatives to reduce it are scarce. Here, we share our initial experiences of implementing Lean thinking and visual management into hospital research units in the Region of Southern Denmark. A Transformation Guiding Team (TGT) anchored in the top management was established with participation from leaders, researchers and patient representatives. The role of the TGT was to implement Lean methods, considering patients as primary end-users of the research results. This is in line with an explicit decision on setting patient values first in clinical settings at participating hospitals. The leaders of the research units were instructed in Lean thinking and Lean methods during a five-module course focusing on increasing value and reducing waste in research production. Initial experiences were that Lean tools could create a patient-centred vision that through visual management could identify waste in work processes. Concerns were lack of evidence for using Lean methods in research leadership and that the model itself could be a time consumer. Some lessons learnt were that adding Lean tools in research leadership should not just provide increased research productivity, but also improve other important key performance indicators such as quality of research and patient-relevant results. We intend to evaluate the value of the initiative by follow-up research and publish the outcome of key behavioural and key performance indicators.


Subject(s)
Efficiency , Leadership , Humans , Efficiency, Organizational
20.
Cancers (Basel) ; 13(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771560

ABSTRACT

The introduction of CDK4/6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has revolutionized the treatment landscape for patients with estrogen receptor-positive (ER+) advanced breast cancer (ABC) and has become the new standard treatment. However, resistance to this combined therapy inevitably develops and represents a major clinical challenge in the management of ER+ ABC. Currently, elucidation of the resistance mechanisms, identification of predictive biomarkers, and development of novel effective combined targeted treatments to overcome the resistance are active areas of research. Given the heterogeneity of the resistance mechanisms towards combined CDK4/6i and ET, identification of a single universal predictive biomarker of resistance is unlikely. Novel approaches are being explored, including examination of multiple genetic alterations in circulating cell-free tumor DNA in liquid biopsies from ABC patients with disease progression on combined CDK4/6i and ET treatment. Here, we review the molecular basis of the main known resistance mechanisms towards combined CDK4/6i and ET and associated potential biomarkers. As inhibiting key molecules in the pathways driving resistance may play an important role in the selection of therapeutic strategies for patients who experience disease progression on combined CDK4/6i and ET, we also review preclinical and early phase clinical data on novel combination therapies for these patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...